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1. Introduction

Unlike the theories for the other three known fundamental interactions, General Relativity

(GR), the currently accepted theory of gravitation described by the Einstein-Hilbert action,

is neither a gauge theory for the Poincaré nor the (A)dS groups.1 The reason is that while

the spin connection can be regarded as a gauge potential for the Lorentz group, the vielbein

does not transform as a connection for translations or (A)dS boosts.

Since the geometry is dynamically determined, the construction of a gauge theory of

gravity would require an action without reference to a fixed space-time background. This

requirement rules out actions of the Yang-Mills type, which requires a background metric.

It turns out that the only possibility of a Lagrangian for gravity in terms of a connection

without extra fields, is given by the Chern-Simons (CS) form for some space-time group

(like the de Sitter, anti de Sitter or Poincaré groups) [1, 2].

A CS gauge theory is one whose Lagrangian is given by the CS form for a gauge group.

These theories have been studied in a variety of contexts (see for instance refs. [3 – 5]). In

particular, CS gravities and supergravities are defined by a space-time gauge group or

one of its supersymmetric extensions. These theories were introduced in refs. [6 – 8] for

three-dimensional space-times. It was noticed that General Relativity in 2+1 dimensions

is a CS theory for the Poincaré group, ISO(2,1), a fact that was exploited by Witten to

show that the theory is exactly solvable at the quantum level [8]. There also exist gravity

theories in higher odd dimensions described in terms of CS actions [9, 10]. For negative

cosmological constant, the local supersymmetric extension in five dimensions was given

in [11], and for higher odd dimensions in [12, 13]. In the absence of cosmological constant

the corresponding supergravity theories were constructed in [14 – 16].

In [13] it was also suggested that the low energy limit of M-theory [17 – 20] may be a

CS theory with gauge group OSp(1|32), a proposal also explored in [21 – 23].

For dimensions d > 3, CS gravity theories are not equivalent to GR. The question of

the relationship between CS and GR in diverse dimensions has been studied in refs.[9, 2,

14, 12, 21]. Recently a new approach to this problem, and to the related one of finding

a “non degenerate vacuum”, has been discussed in ref. [16] for the eleven-dimensional

supergravity invariant under the M-algebra.

In this work we consider theories based on transgression forms, which are generaliza-

tions extending CS forms by the inclusion of a second gauge field [24 – 29]. Conversely, CS

forms can be thought of as transgression forms with one of the gauge fields set equal to

zero. The second gauge field in the transgression form can be interpreted either as a fixed,

non-dynamical background, or as a dynamical field on the same footing as the first one. In

the second case, it is possible to conceive both fields as defined on different manifolds with

a common boundary, thus eliminating possible ambiguities in the physical interpretation.

This is the point of view we advocate here.

Transgression forms can be used to define actions for physical systems that give rise

to well defined conserved charges [30, 31], and in the construction of actions for extended

1For a discussion on this point, including references, see e.g., [1, 2]
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objects [32, 33]. More recently, transgression forms have also been used in [34 – 36]. Trans-

gression forms in field theory were also the central topic of ref. [37].

Using transgression forms to construct the action has several advantages:

(i) The transgression form singles out a unique boundary term for the action principle,

allowing both background-dependent and background-independent formulations of

the same system. In particular, in the background-independent approach, as shown

in ref. [31], it provides a well defined variational principle for a wide set of boundary

conditions.

(ii) In the case of gravitation, the boundary terms introduced by the transgression allow

to regularize the action for black hole configurations in diverse situations. Thus,

black hole thermodynamics is obtained using either a background field approach

or a background-independent setting, even in cases with asymptotically nontrivial

topologies. The results agree with the ones computed by hamiltonian methods [38 –

40].

(iii) Conserved charges can be constructed as surface integrals through the Noether me-

thod. The energy obtained in this way agrees with the result found from thermodi-

namics.

The plan of this work is as follows. Section 2 is devoted to the construction of la-

grangians as transgression forms in which the two connection fields A and A coexist in

the same spacetime manifold, which is sufficient to compute some quantities of physical

interest. In section 3 this construction is applied to gravity with negative cosmological

constant, in order to make contact with the background-independent approach of [31]. In

section 4, the interpretation of section 2 is revisited and a proposal is advanced where the

two fields A and A are regarded as having support in two distinct manifolds M and M with

a common boundary. In section 5, the new setting is applied to the spacetime geometry, in

particular for black holes of various dimensions and diferent topologies verifying points (ii)

and (iii) above. Section 6 contains the discussion and comments, while reviewed material

and some detailed calculations are contained in the appendices.

2. Transgression forms as Lagrangians

A Chern-Simons form C2n+1(A) is a differential form defined for a connection A, whose

exterior derivative yields a Chern class. Although the Chern classes are gauge invariant,

the CS forms are not; under gauge transformations they change by a closed form. A

transgression form T2n+1 on the other hand, is an invariant differential form whose exterior

derivative is the difference of two Chern classes. It generalizes the CS form with the

additional advantage that it is gauge invariant. The price to pay is that it is a function of

two connections A and A. In fact, a transgression form can be written as the difference of

two CS forms plus an exact form,

T2n+1 = C2n+1(A) − C2n+1(A) − dB2n

(

A,A
)

. (2.1)
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It can be written as (see e.g., [29]),

T2n+1

(

A,A
)

= (n + 1)

∫ 1

0
dt < ∆AFn

t > , (2.2)

where2

At = tA + (1 − t)A

= A + t∆A , (2.3)

is a connection that interpolates between the two independent gauge potentials A and

A. The Lie algebra-valued one-forms A = AI
µTI dxµ and A = A

I
µTI dxµ are connections

under gauge transformations, TI are the generators, and < · · · > stands for a symmetrized

invariant trace in the Lie algebra (see appendix A). The corresponding curvature is

Ft = dAt + A2
t

= tF + (1 − t)F − t(1 − t)(∆A)2 , (2.4)

and the explicit expression for the 2n-form C2n is

B2n = −n(n + 1)

∫ 1

0
ds

∫ 1

0
dt s < At∆A Fn−1

st > (2.5)

where Fst = sFt +s(s−1)A2
t . Hence, the role of the surface term B2n is to cancel the varia-

tion of the bulk terms C2n+1, which change by a closed form under a gauge transformation.

The pure CS density is recovered setting A = 0.

Transgression forms can be used as a field theory Lagrangians for gauge fields A and

A, where B2n is the interaction term which is only defined at the boundary.

Conserved charges written as surface integrals for CS theories have been obtained us-

ing different approaches in Refs. [41, 42]. Since the transgression form (2.2) is manifestly

invariant under diffeomorphisms and gauge transformations where both A and A trans-

form as connections simultaneously, the corresponding conserved charges can be simply

written as surface integrals by direct application of Noether’s theorem. Assuming suitable

asymptotic conditions for the fields, one obtains the conserved charges associated with an

asymptotic Killing vector ξ as

Q(ξ) = n(n + 1)

∫

∂Σ

∫ 1

0
dt < ∆AFn−1

t IξAt > , (2.6)

where ∂Σ is the boundary of the spatial section Σ. Analogously, for an asymptotically

covariantly constant Lie algebra valued parameter λ = λITI , Dλ = 0 , the charges corre-

spond to

Q(λ) = n(n + 1)

∫

∂Σ

∫ 1

0
dt < ∆AFn−1

t λ > . (2.7)

The explicit derivation of (2.6) and (2.7) is simple [37, 43], and is reproduced here in

appendix B.

2Here wedge product between forms is assumed.
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As explicit examples, the expression for the transgression form in three dimensions is

T3 = C3(A) − C3(A) − d < AA > , (2.8)

where C3(A) stands for the CS form

C3 =< AF − 1

3
A3 > . (2.9)

Similarly, in five dimensions the transgression form turns out to be

T5(A,A) = C5(A) − C5(A) − dB4(A,A) , (2.10)

where the five-dimensional CS Lagrangian reads

C5 =< AF 2 − 1

2
A3F +

1

10
A5 > , (2.11)

and the boundary term is

B4(A,A) =
1

2
< (AA − AA)(F + F ) + AA3 + A

3
A +

1

2
AAAA > . (2.12)

3. Finite action for gravity for the AdS group

Following the same basic principles of General Relativity in higher dimensions allows for

a wide class of gravity theories. The generalization of the Einstein-Hilbert Lagrangian for

any dimension d are the so-called the Lovelock Lagrangians [44],3

LLovelock = κ

∫

M

n
∑

p=0

αpL
(p) , (3.1)

where L(p) are the dimensional continuations of Euler densities from lower dimensions

L(p) = εa1···ad
Ra1a2 · · · Ra2p−1a2p ea2p+1 · · · ead .

Here ea is the vielbein one-form, and Rab = dωab + ωa
cω

cb is the curvature two-form.

3.1 Chern-Simons gravity

For d = 2n + 1 and the special choice of coefficients

αp =
l2(p−n)

d − 2p

(

n

p

)

, (3.2)

the action corresponds to CS form for the AdS group [9], up to a boundary term. It is

useful to rewrite the series (3.1) with the choice (3.2) as an integral over a continuous

parameter t ∈ [0, 1],

LCS(ωab, ea) = κ

∫ 1

0
dt εa1···a2n+1

Ra1a2

t · · ·Ra2n−1a2n

t ea2n+1 , (3.3)

3Latin indices a, b run from 0, ..., d − 1.
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with

Rab
t ≡ Rab + t2eaeb ,

where the AdS radius l has been set equal to one. Hereafter we choose κ = [2(d −
2)!Ωd−2G]−1, where Ωd−2 is the volume of the sphere Sd−2, and G is the d-dimensional

‘Newton constant’.

The explicit link between this action and a CS form can be seen as follows. The

connection for the AdS group SO(d − 1, 2) reads

A =
1

2
ωabJab + eaPa , (3.4)

where Jab, and Pa stand for the generators of Lorentz rotations and AdS boosts, respec-

tively. Here ea is identified with the vielbein and ωab with the spin connection. The

corresponding curvature F = dA + A2 is given by

F =
1

2

(

Rab + eaeb
)

Jab + T aPa ,

where T a = Dea is the torsion two-form.

The AdS group admits an invariant tensor yielding the symmetric trace

< Ja1a2
...Ja2n−1a2n

Pa2n+1
>= κ

2n

(n + 1)
εa1...a2n+1

, (3.5)

and it is simple to check that the Lagrangian in eq. (3.3)

LCS(ωab, ea) = κ

∫ 1

0
dt ε (Rt)

n e ,

satisfies4

dLCS = κε(R + e2)nT =< Fn+1 > , (3.6)

and hence, the Lagrangian is a CS form, up to an exact form.

3.2 Transgression

The explicit expression for the transgression form (2.2) for the AdS group is obtained

defining A = 1
2ωabJab + eaPa (see appendix C), and is written in terms of (3.3) as

T2n+1 = LCS(ω, e) − LCS(ω, e) − dB2n . (3.7)

Since the transgression form is invariant by construction under local Lorentz transfor-

mations, it cannot depend separately on ω and ω, but only through the combination

∆ω = ω − ω, which transforms as a tensor. Indeed, the boundary term is given by

B2n = κn

∫ 1

0
dt

∫ 1

0
ds ε ∆ω et

[

tR + (1 − t)R − t(1 − t)(∆ω)2 + s2e2
t

]n−1
(3.8)

where, from eq. (2.3), et = te + (1 − t)e.

4Here, for simplicity we have omitted the indices, which are assumed to be contracted in canonical order.
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Note that the Lorentz invariance of (3.7) is manifest since the curvatures, vielbeins and

∆ω are Lorentz tensors. However these are not tensors under AdS boosts and therefore,

although the full local AdS invariance is ensured by construction, this invariance is not

manifest in (3.7).

An explicit example of (3.7) and (3.8), in d = 2 + 1 dimensions is the transgression

form

T3 = κεabc

(

Rabec +
1

3
eaebec

)

−κεabc

(

R
ab

ec +
1

3
eaebec

)

−κ
1

2
εabcd[∆ωab(ec + ec)] , (3.9)

which in a more compact notation reads

T3 = κε

(

Re +
1

3
e3

)

− κε

(

Re +
1

3
e3

)

− 1

2
κεd[∆ω(e + e)] . (3.10)

Analogously, the transgression form in d = 4 + 1 is

T5 = κε

(

R2e +
2

3
Re3 +

1

5
e5

)

− κε

(

R
2
e +

2

3
Re3 +

1

5
e5

)

−1

3
κε d

[

∆ω (e+e)

(

R− 1

4
(∆ω)2+

1

2
e2

)

+∆ω (e + e)

(

R − 1

4
(∆ω)2 +

1

2
e2

)

(3.11)

+∆ωRe + ∆ωRe

]

. (3.12)

In what follows, it is shown that the transgression form provides the suitable bound-

ary terms which yield well defined and finite action principles adapted to different situa-

tions. Remarkably, regularized action principles using background fields, as well as finite

background-independent actions can be obtained as particular cases within a unique frame-

work. The thermodynamics of black holes is then reproduced in both settings even in cases

where the horizon manifold has a nontrivial topology.

3.3 Background-independent action and conserved charges

A finite action principle that is background independent, must depend only on the intrinsic

geometric quantities, as the metric and the curvature, as well as on the extrinsic curvature of

the manifold at the boundary. This means that apart from the vielbein and the curvature,

the boundary term could depend only on the second fundamental form, which is defined as

θab = ωab − ω̄ab ,

where ω̄ab is defined only at the boundary. Hence, ω̄ab can be naturally identified with the

spin connection of an auxiliary manifold M̄ which is cobordant with M , (i.e. ∂M = ∂M̄ ),

and is endowed with a product metric which matches the metric of M at the boundary.

As a consequence, the required objects are the vielbein ea, the spin connection ωab,

as well as the auxiliary spin connection ω̄ab chosen as described above. Such an action

principle can then be obtained through a transgression form (2.2) with

A =
1

2
ωabJab + eaPa ,

A =
1

2
ω̄abJab . (3.13)
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It is worthwhile to point out that, since transgression form is invariant by construction

under local Lorentz transformations, it does not depend separately on ω and ω̄, but only

through the combination ∆ωab = ω − ω̄ = θab, which transforms as a tensor.

As announced in Ref. [31], the required action principle is then recovered by means of

eqs. (3.7) and (3.8), so that the action becomes

I =

∫

M

T2n+1 ,

with ēa = 0. In concrete, replacing ēa = 0 annihilates the second bulk term in eq. (3.7).

Making the same replacement in (3.8), using the Gauss-Codazzi equation Rab = R̄ab+(θ2)ab

for the relevant components at the boundary, and changing st → s, the boundary term

turns out to be

B2n = κn

∫ 1

0
dt

∫ t

0
ds ε θ e

(

R̄ + t2θ2 + s2e2
)n−1

,

in agreement with [31]. It was shown that this boundary term is sufficient to render the

action finite for asymptotically locally AdS solutions. Furthermore, the Euclidean contin-

uation of the action correctly describes the black hole thermodinamics in the canonical

ensemble even in cases with asymptotically nontrivial topology.

Following the same proceduce, the conserved charges written as surface integrals ob-

tained in [31]

Q(ξ) = κn

∫

∂Σ

∫ 1

0
dt t ε (Iξθe + θIξe)

(

R̄ + t2θ2 + t2e2
)n−1

,

are recovered from eq. (2.6). It is worth mentioning that although the black hole mass

can be computed from two radically different approaches, namely form thermodynamics or

form the surface integrals, both results completely agree, including the for the zero point

(or Casimir) energy, which corresponds to the mass of the locally AdS solutions.

4. Reinterpretation of the theory

The complete definition of the theory involves both the action principle and suitable bound-

ary conditions. For the action principle to be well defined the action must have an ex-

tremum for solutions of the field equations satisfying the boundary conditions.

The action could be taken to be just the integral on a single manifold M of the

transgression form. This field theory would describe two self-interacting fields A and A,

which only interact with each other at the boundary. This is a rather strange state of

affairs: there is a duplicity of identical dynamical fields which coexist in the spacetime M ,

but don’t affect each other, except by their interaction at the boundary Moreover, since

the kinetic term for A has the wrong sign, this field would be a phantom with an ill-defined

propagator.

One way to avoid this conflict is to assume A to be a non dynamical background field.

This action, however, would be gauge invariant only up to a surface term.

There is a different conceptual framework where the transgression naturally fits in, and

which is free from the difficulties mentioned above, i. e., gauge invariance and absence of

phantoms. The idea is to conceive the fields A and A as defined on cobording manifolds M

– 8 –
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and M , respectively, such that ∂M ≡ ∂M . Then, we propose the following action principle

Itrans =

∫

M

C2n+1(A) −
∫

M

C2n+1(A) −
∫

∂M

B2n

(

A,A
)

, (4.1)

which describes two Chern-Simons systems interacting only at their common boundary.

Some remarks are in order:

(i) The action of eq. (4.1) is exactly invariant under gauge transformations since both

A and A transform as connections in their respective domains, provided the gauge

transformation is continuous across ∂M .

(ii) The orientation of M and M are such that their normals point in the same direction.

The anomalous sign of the second term can be reversed by inverting the orientation

of the second manifold M → M
∗
.

(iii) The action (4.1) is not the integral of the transgression form on a single manifold M

with boundary ∂M , but an integral over a surface M ∪M
∗
, plus an integral over the

seam, ∂M .

What emerges is a field theory for two subsystems in contact at their common bound-

ary, each described by a CS lagrangian (with the right signs). This description is most

natural in the analysis of black hole thermodynamics below, where the two manifolds M

and M (or M
∗
) don’t even have the same topology (see, e.g., the construction in [31]).

The variation of the action (4.1) is (see appendix A)

δItrans = (n + 1)

∫

M

< FnδA > +

∫

M
∗

< F
n
δA > +

∫

∂M

Θ2n (4.2)

The field equations,

< FnTI > |M = 0 , < F
n
TI > |M = 0 ,

coincide with those of a pure CS theory for two independent connections in the corre-

sponding manifolds M and M . The action attains an extremum provided the boundary

term

Θ2n = −n(n + 1)

∫ 1

0
< ∆AFn−1

t δAt > (4.3)

vanishes on ∂M . A sufficient boundary condition would be, for instance, to require ∆A → 0

at the boundary, with a fast enough fall-off in the direction normal to the boundary, while

Ft remains finite at the boundary so that Θ2n = 0. One may call this case where the

connection A approaches a reference field configuration A at the boundary, background

dependent. Alternatively, the approach in which A and A are both dynamical fields, can be

called background independent. Of course, there exist infinitely many other ways to ensure

the vanishing of (4.3), in which some components approach a reference connection, while

others don’t, for example. We shall make use of this possibility in Sect. 3.1 below.

In varying the action, one could also assume that A is dynamical, while A is a fixed

background which should not be varied. In this case, the second term in the R.H.S. of (4.2)

wouldn’t exist and only A needs to satisfy the field equations. In any case, A could also be

taken as a special solution of the field equations, identified as a “vacuum”. However this

means that the canonical realization of gauge invariance may break down at the boundary.

– 9 –
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5. Application to gravity

5.1 Black hole thermodynamics with a reference geometry

The purpose of this subsection is to show that the same transgression form (2.2) also

provides an alternative way to obtain a regularized action with a reference background

geometry (ea 6= 0), which may work in more exotic situations.

The action principle we now consider is

Itrans =

∫

M

LCS(ω, e) +

∫

M
∗

LCS(ω, e) −
∫

∂M

B2n , (5.1)

where LCS is the Lagrangian defined by eq. (3.3), and B2n is the boundary term (3.8).

Here the spin connection ωab and the vielbein ea have support only on the manifold M ,

while ωab and ea have support only on the cobordant manifold M .

In what follows it is shown that in the Euclidean continuation, the regularized ac-

tion (5.1) is finite and gives the correct free energy in the canonical ensemble for black

holes, even in cases with nontrivial topology. It is also shown that the energy found from

the thermodynamic analysis coincides with the one obtained from the Noether theorem.

5.1.1 Euclidean action and black hole thermodynamics

We consider a family of black holes whose horizons may have a non-spherical topology,

labeled by the parameter γ which can take the values ±1, 0. The line element is [45, 46,

40, 39]

ds2 = −∆2dt2 +
1

∆2
dr2 + r2dΣ2

d−2 , (5.2)

with

∆2 = γ − σ + r2 , (5.3)

where dΣ2
d−2 is the line element of the (d − 2)-dimensional base manifold of constant

curvature proportional to γ = 1, 0,−1. The horizon is located at r+ =
√

σ − γ, and in the

euclidean continuation, the manifold for a massive black hole has a radial coordinate that

extends over the range r+ ≤ r < ∞. The euclidean time period β which determines the

temperature is found demanding smoothness of the Euclidean solution at the horizon

β = T−1 =
2π

r+
.

For a fixed temperature, in the semiclassical approximation, the Euclidean action is related

to the free energy F in the canonical ensemble, IE = −βF = −βE + S.

Here it is shown that the black hole thermodynamics is reproduced evaluating the

solution in euclidean continuation of the action in eq. (5.1). Thus, we consider A corre-

sponding to a black hole solution of the form (5.2), while A is assumed to be a reference

configuration given by a suitable solution of the field equations. Since the time period β

is fixed for the Euclidean black hole solution, the reference background must be such that

β̄ is arbitrary in order to have a well-defined cobordism between the manifolds M and M̄ .

This requirement is fulfilled for the solution (5.2)) with r+ = 0, i.e., for σ̄ = γ, as well as

for AdS spacetime which corresponds to σ̄ = 0 in the spherically symmetric case (γ = 1).
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A. Asymptotic spherical symmetry (γ = 1). In this case there are two possible

reference geometries with arbitrary β, AdS space and the “black hole vacuum” with σ̄ = 1.

In both cases the range of the radial coordinate is 0 ≤ r < ∞.

The bulk contributions to the euclidean continuation of the action (5.1) are

Ibulk
trans = κβ(d − 2)!Ωd−2

∫ 1

0
ds [(σ + (s2 − 1)r2)n + 2nr2(s2 − 1)(σ + (s2 − 1)r2)n−1]

∣

∣

r=∞

r=r+

−κβ(d − 2)!Ωd−2

∫ 1

0
ds [(σ+(s2−1)r2)n+2nr2(s2−1)(σ + (s2 − 1)r2)n−1]

∣

∣

r=∞

r=0
,

where Ωd−2 is the volume of the d − 2-dimensional unit sphere. The boundary term is

∫

∂M

B2n = −2nκβ(d − 2)!Ωd−2 lim
r→∞

∫ 1

0
dt

∫ 1

0
ds{(∆ − ∆)[t∆ + (1 − t)∆] ×

×[1 − (t∆ + (1 − t)∆)2 + s2r2]n−1

+2(n − 1)r2(s2 − 1)(∆ − ∆)[t∆ + (1 − t)∆][1 − (t∆ + (1 − t)∆)2 + s2r2]n−2}

Integration on t can be performed with the substitution u = 1 − (t∆ + (1 − t)∆)2 + s2r2.

Hence, the boundary term exactly cancels the divergent contributions of the bulk

(corresponding to the r → ∞ limit), so that the total action (5.1) is finite and given by

Itrans =
βn

G
r+

∫ r+

0
dx(1 + x2)n−1 − β

2G
(σn − σ̄n) . (5.4)

The entropy is then given by

S =

[

1 − β
∂

∂β

]

Itrans =
2πn

G

∫ r+

0
dx(1 + x2)n−1 , (5.5)

which doest not depend on the choice of reference configuration in agreement with previous

calculations done by other methods [45, 39, 31]. The energy is

E = −∂Itrans

∂β
=

1

2G
(σn − σ̄n) , (5.6)

which depends on the choice of reference background. Note that if the reference configu-

ration is taken to be the black hole vacuum (σ̄ = 1) these results agree with the ones of

Ref. [31], where AdS spacetime can be regarded to have a nonvanishing “Casimir” energy

given by EAdS = −(2G)−1.

B. Other topologies (γ = 0,−1). The evaluation of the euclidean action for black holes

with nontrivial topology follows the same steps as in the previous case. The background

configuration is the one with r+ = 0 which corresponds to choose σ̄ = γ. Again, the

divergent part of the bulk contributions cancel the boundary term, and now the action

becomes

Itrans =
βn

G

Σd−2

Ωd−2
r+

∫ r+

0
dx(γ + xr2)n−1 − β

2G

Σd−2

Ωd−2
(σn − γn) , (5.7)
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where Σd−2 stands for the volume of the d − 2 dimensional base manifold. The entropy

now reads

S =
2πn

G

Σd−2

Ωd−2

∫ r+

0
dx(γ + x2)n−1 , (5.8)

and the energy is given by

E =
Σd−2

Ωd−2
(σn − γn) . (5.9)

Note as in the background independent approach, the energy of the configuration with

negative constant curvature (σ = 0) depends on the topology and is given by E = γn(2G)−1

in agreement with [31].

Note that the background substraction procedure that occurs here is not the same

as the one proposed by Gibbons and Hawking [47], or by Hawking and Page [48]. In

those papers, the actions for two different configurations (for instance, for a massive black

hole and Minkowski space) are subtracted, with the additional condition that the metrics

match at a very large finite radius r0 (eventually taken to infinity). That implies two

different Euclidean time intervals β and β. Although β → β when r0 → ∞, there is

an extra contribution to the bulk action coming from the difference of the β’s. In our

approach there is always only one β, as it must be in order to integrate the boundary term

B2n, where both sets of vielbein and spin connections appear entangled, and we have an

extra contribution coming from that boundary term. The boundary terms obtained in the

standard way coincide with our approach for 2+1 dimensions only.

5.2 Noether charges for AdS gravity

In this section, we show that the energy found from the thermodynamic analysis discussed

above agrees with the computation from direct application of Noether’s theorem.

5.2.1 Black hole mass from the asymptotic timelike isometry

The Noether charge associated to isometries generated by a vector ξµ is

Q(ξ) = n(n + 1)

∫

∂Σ

∫ 1

0
dt < ∆AFn−1

t IξAt > . (5.10)

Here A and A correspond to two arbitrary configurations of the form (5.2) for the same

topology at the boundary, i. e., for the same γ. For the timelike Killing vector ξ = ∂ /∂t,

(5.10) gives (see appendix D for the details)

Q

(

∂

∂t

)

=
Σd−2

Ωd−2
(σn − σ̄n) = E − Ē , (5.11)

where E stands for the energy computed from thermodynamics. Thus, if A is chosen

as a reference background solution of the previous section, this charge reproduces the

energy computed above. This expression also coincides with the result obtained from the

background independent approach in Ref. [31] when the background configuration is the

one for which the horizon radius vanishes, i.e., choosing σ̄ = γ.
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5.2.2 Black hole mass from the gauge Noether charge

Alternatively, the energy can be obtained from the Noether charge associated to gauge

transformations, which is given by

Q(λ) = n(n + 1)

∫

∂Σ

∫ 1

0
dt < ∆AFn−1

t λ > . (5.12)

The charge is then evaluated taking both A and A as two arbitrary solutions of the the

form (5.2), with the same topology at the boundary, for an asymptotically covariantly

constant gauge parameter λ = λaPa + 1
2λabJab satisfying δλA = Dλ = dλ + Aλ − λA = 0

for r → ∞.

The identity LξA = D(IξA)+ IξF , allows to identify the Lie algebra valued parameter

λ with a Killing vector as λ = IξA provided the curvature vanishes sufficiently fast at

infinity. Thus, choosing the gauge parameter as

λ = IξAr→∞ → rP0 + rJ01 . (5.13)

where ξ is the timelike Killing vector ∂ /∂t allows to obtain the the difference between the

energies from (5.12)

Q (λ) =
Σd−2

Ωd−2
(σn − σ̄n) = E − Ē .

In the spherically symmetric case, black hole solutions possess d− 1 independent solutions

depending on the arbitrary constants C1, Cm, with m = 2, ..., d − 1, given by

λ1 = λ0m = 0 (5.14)

λ0 = λ01 = C1r (5.15)

λm = λm1 = Cmr (5.16)

λm
n ẽn = ωm

n Cn , (5.17)

so that (5.13) is recovered choosing the parameters as C1 = 1 and Cm = 0.

6. Discussion and comments

The results reported here (and in ref. [31]) support the conjecture that the boundary terms

dictated by gauge invariance, supplemented by boundary conditions that make the action

principle well defined, give the right conserved charges and black hole entropy without

requiring any regularization. The similar problem of computing the conserved charges for

the Lovelock theories of gravity in even dimensions was studied in ref. [49], where it was

shown that it is possible to regularize the action and the charges by adding a surface term

whose exterior derivative is the Euler density of the spacetime manifold.

As we mentioned, A could be regarded as a fixed reference or background configuration,

a non dynamical entity. However, a better option is to assume both A and A in different

manifolds with a common boundary. The calculation of the entropy with A corresponding

to AdS or to a zero mass black hole supports this option. About the question of what is
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dynamical and what isn’t it is worthwhile to remember the comment by Yang and Mills in

their landmark paper on non abelian gauge fields about the need to give dynamical content

to the gauge field, which they called Bµ [50].

It would be interesting to explore the application of the ideas presented for CS gravity in

the presence of “exotic” parity-violating terms [8, 51, 10], as well as for its supersymmetric

extensions, and in the framework of the AdS/CFT correspondence [52].

The lesson from this discussion is that the action (4.1), inspired by the transgression

form, has an important advantage over the pure CS action. The boundary term incorpo-

rated in this way renders the action principle well defined and the Euclidean action for

black holes finite, whereas the pure CS action diverges. Hence, it is natural to think of

the boundary terms as regulator for the CS theory. It is somehow surprising that these

difficulties are solved in one stroke just by requiring strict gauge invariance, and this also

suggests that the action principle defined by (4.1), would be a better starting point for a

path integral quantization.
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A. Invariant polynomials, transgression forms and CS forms

In this appendix we review for completeness some elements of the theory of fiber bundles

used in this paper. This material can be found in refs.[24 – 27, 29, 53]. We are not aware

of any reference for the explicit formula for the variation of the transgression that we

used (though it is probably known) so we give a derivation in the last subsection of this

appendix.

An invariant polynomial P (F ) is defined as the formal sum

P (F ) =

N
∑

n=0

αn < Fn+1 > (A.1)

where

< TI1 . . . TIn+1
>= gI1···In+1

corresponds to a symmetric invariant trace in the algebra of G. This is equivalent to say

that gI1···In+1
is an invariant symmetric tensor in the algebra of G, which by construction

has its indices in the adjoint representation of G.
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It can be shown that the invariant polynomials are closed

dP (F ) = 0

therefore locally exact

P (F ) = dC2n+1(A,F )

where we introduced the CS form defined by

C2n+1(A,F ) ≡ (n + 1)

∫ 1

0
ds < AFn

s >

with As = sA and Fs = dAs + A2
s.

A similar relation which holds globally is the transgression formula, involving two

potentials A and A in the same fiber, with curvatures F and F respectively

< Fn+1 > − < F
n+1

>= dT2n+1(A,A)

with the transgression form defined as

T2n+1(A,A) ≡ (n + 1)

∫ 1

0
dt < (A − A)Fn

t >

with At = tA + (1 − t)A and Ft = dAt + A2
t .

The transgression form is invariant under gauge transformations for which A and

A transform with the same group element g of the group G, due to the covariance of

∆A ≡ A − A, (∆A)g = g−1(∆A)g, the covariance of Ft, F g
t = g−1Ftg, and the invariance

of the symmetrized trace.

A.1 Cartan operator and homotopy formula

Let At be the interpolation between two gauge potentials A and A,

At = tA + (1 − t)A , Ft = dAt + A2
t .

The Cartan homotopy operator k01 acts on polynomials P(Ft, At) and is defined as

k01P(Ft, At) =

∫ 1

0
dt ltP(Ft, At) ,

where the action of the operator lt on arbitrary polynomials of At and Ft is defined through

ltAt = 0 , ltFt = A − A ≡ ∆A ,

and the convention that lt acts as an antiderivative lt(ΛpΣq) = (ltΛp)Σq + (−1)pΛp(ltΣq),

where Λp and Σq are p and q-forms (polynomials in At and Ft) respectively.

It can be verified the relationship

(ltd + dlt)P(Ft, At) =
∂

∂t
P(Ft, At)
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which can be integrated between 0 and 1 in t to obtain the Cartan homotopy formula

(k01d + dk01)P(Ft, At) = P(F,A) − P(F ,A) .

For P =< Fn+1 > we recover the transgression formula. Putting P = C2n+1 we get

T2n+1 = C2n+1(A,F ) − C2n+1(A,F ) − d[k01C2n+1]

The 2n form B2n is defined by

B2n(A,F ;A,F ) ≡ k01C2n+1

Explicitly

B2n = −n(n + 1)

∫ 1

0
ds

∫ 1

0
dt s < At∆A Fn−1

st > (A.2)

where Fst = sFt + s(s − 1)A2
t

A.2 General variation of the transgression

The transgression form is

T2n+1 = (n + 1)

∫ 1

0
dt < ∆AFn

t >

with ∆A = A − A. furthermore

At = t∆A + A = tA + (1 − t)A

and

Ft = dAt + A2
t = F + tD(∆A) + t2(∆A)2

with F = dA + A
2

and D(∆A) = d(∆A) + A(∆A) + (∆A)A. Notice that the derivative of

Ft with respect to the parameter t satisfy

d

dt
Ft = Dt(∆A) = d(∆A) + At(∆A) + (∆A)At = d(∆A) + 2t(∆A)2 + A(∆A) + (∆A)A

For the general variation of the transgression form we have

δT2n+1 = (n + 1)

∫ 1

0
dt{< Fn

t δ(∆A) > + < n(∆A)Fn−1
t Dt[δAt] >}

but, inside the bracket,

Dt[∆AFn−1
t δAt] = Dt(∆A)Fn−1

t δAt−∆AFn−1
t Dt[δAt] =

d

dt
FtF

n−1
t δAt−∆AFn−1

t Dt[δAt]

and using δAt = tδ(∆A) + δA we get

δT2n+1 = (n + 1)

∫ 1

0
dt{< [Fn

t + tn
d

dt
FtF

n−1
t ]δ(∆A) > + < n

d

dt
FtF

n−1
t δA >}
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−n(n + 1) d

∫ 1

0
dt < ∆AFn−1

t δAt >

but , when inside the bracket, Fn
t + tnd

dt
FtF

n−1
t = d

dt
[tFn

t ] and nd
dt

FtF
n−1
t = d

dt
Fn

t , which

allow to evaluate explicitly the first to integrals in t giving

δT2n+1 =(n+1) < Fnδ(∆A) >+(n+1) < (Fn−F
n
)δA >−n(n+1) d

∫ 1

0
dt < ∆AFn−1

t δAt >

and finally we get for generic infinitesimal variations of the transgressions

δT2n+1 = (n + 1) < FnδA > −(n + 1) < F
n
δA > −n(n + 1) d

∫ 1

0
dt < ∆AFn−1

t δAt >

B. Noether’s theorem and Conserved Charges

B.1 Noether’s Theorem

The variation of differential forms under diffeomorphisms for which the coordinates change

as δxµ = ξµ is given by

δα(x) = α′(x) − α(x) = −Lξα

where Lξ is the Lie derivative, which for differential forms can be written as

Lξα = [dIξ + Iξd]α

with d the exterior derivative and the contraction operator given by

Iξαp =
1

(p − 1)!
ξνανµ1...µp−1

dxµ1 ...dxµp−1

The operator Iξ is an antiderivation, in the sense that acting on the exterior product of two

differential forms αp and βq of orders p and q it gives Iξ(αpβq) = Iξαpβq + (−1)pαpIξβq. A

useful result is that the Lie derivative acting on gauge potentials is

LξA = D(IξA) + IξF

where D is the covariant derivative and F the field tensor.

One consider a lagrangian density given by a differential form L(φ, ∂φ), where φ represents

all the dynamical fields. The variation of the lagrangian under diffeomorphisms is given by

δL = −d(IξL), as dL = 0 because the order of L is equal to the dimension of the space. One

considers a class of transformations under which the lagrangian is quasi-invariant, combined

with diffeomorphisms. Under these transformations the variation of the lagrangian is

δL = dΩ − d(IξL)

where the first total derivative come from the transformations considered and the second

one from the diffeomorphisms.
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On the other hand, the standard procedure leading to the equations of motion gives

the variation of the lagrangian as the equations of motion times the variation of φ plus a

boundary term

δL = (E.d.M.)δφ + dΘ

where the variations δφ are infinitesimal but arbitrary in form. ¿From this two expressions

of the variation, assuming that the variations in both are restricted to transformations of

the class considered in the first expression of δL and equating, that if the E.O.M. hold

d[Ω − IξL − Θ] = 0

It follows that the so called Noether current

?j = Ω − IξL − Θ

is conserved d(?j) = 0.

In the next two subsections we will deduce the general form of the gauge and diffeomor-

phism Noether charges for Transgression and Chern-Simons theories. In the calculation of

the expressions for the charges both gauge fields appearing in the transgression are varied.

If one prefers to consider the second field as non dynamical, one could think of varying it as

a trick, analogous to varying the flat Minkowski metric to compute the energy momentum

tensor of a field in flat space-time, for a theory for which the metric is non dynamical.

B.2 Diffeomorphism Noether charges

The variation of the gauge potentials under diffeomorphisms is

δξA = −LξA = −D[IξA] − IξF = −[Iξd + dIξ ]A (B.1)

δξA = −LξA = −D[IξĀ] − IξF̄ = −[Iξd + dIξ ]A (B.2)

δξAt = −LξAt = −Dt[IξAt] − IξFt = −[Iξd + dIξ]At (B.3)

Inserting this in the variation of the transgression

δT2n+1 = (n + 1) < FnδA > −(n + 1) < F̄nδĀ > −n(n + 1) d

∫ 1

0
dt < ∆AFn−1

t δAt >

we can read the form Θ that appears in the Noether theorem

Θ = −n(n + 1)

∫ 1

0
dt < ∆AFn−1

t δξAt > (B.4)

or

Θ = n(n + 1)

∫ 1

0
dt < ∆AFn−1

t Dt[IξAt] + ∆AFn−1
t IξFt > (B.5)

But, inside the bracket,

Dt[∆AFn−1
t IξAt]=Dt∆AFn−1

t IξAt−∆AFn−1
t Dt[IξAt]=

d

dt
FtF

n−1
t IξAt−∆AFn−1

t Dt[IξAt]
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then

Θ = n(n+1)

∫ 1

0
dt

〈

d

dt
FtF

n−1
t IξAt + ∆AFn−1

t IξFt

〉

−n(n+1) d

∫ 1

0
dt < ∆AFn−1

t IξAt >

(B.6)

For the term IξL in the Noether current we have

IξL = IξT2n+1 = (n + 1)

∫ 1

0
dt < Iξ(∆A)Fn

t − n∆AFn−1
t IξFt > (B.7)

The current is ∗j = Ω − [Θ + IξL], but Ω = 0 because the action is invariant under

diffeomorphisms, then

∗j = −[Θ + IξL] = −(n + 1)

∫ 1

0
dt

〈

n
d

dt
FtF

n−1
t IξAt + Iξ∆AFn

t

〉

+n(n + 1) d

∫ 1

0
dt < ∆AFn−1

t IξAt >

but IξAt = tIξ(∆A) + IξA, then Iξ(∆A) = d
dt

IξAt and therefore

〈

n
d

dt
FtF

n−1
t IξAt + Iξ∆AFn

t

〉

=
d

dt
< Fn

t IξAt >

This expression allows to integrate the first terms of the current,yielding

∗j =< FnIξA > − < F̄nIξA > +n(n + 1) d

∫ 1

0
dt < ∆AFn−1

t IξAt > (B.8)

The first two terms of the second member vanish due to the E.O.M., then

∗j = dQξ (B.9)

with

Qξ = +n(n + 1)

∫ 1

0
dt < ∆AFn−1

t IξAt > (B.10)

The conserved charge is then

Q(ξ) =

∫

∂Σ
Qξ = +n(n + 1)

∫

∂Σ

∫ 1

0
dt < ∆AFn−1

t IξAt > (B.11)

¿From this expression one gets the one for pure Chern-Simons by setting A = 0,

because the configuration A = 0 satisfies the E.O.M..

B.3 Gauge Noether charges

The variation of A and A under gauge transformations is

δλA = −Dλ , δλA = −Dλ, (B.12)

which implies

δλAt = −Dtλ = −dλ − Atλ + λAt (B.13)
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The E.O.M., which we assume are satisfied by both fields A and A, are < FnTI >= 0 and

< F̄nTI >= 0. It follows that we can read the form Θ appearing in the Noether theorem

(see appendix) from the expression for the variation

Θ = n(n + 1)

∫ 1

0
dt < ∆AFn−1

t Dtλ > (B.14)

The form Ω is zero in this case, because the transgression is gauge invariant. It follows

that the conserved current is

∗jλ = −Θ = −n(n + 1)

∫ 1

0
dt < ∆AFn−1

t Dtλ > (B.15)

Furthermore ∗jλ = dQλ with

Qλ = n(n + 1)

∫ 1

0
dt < ∆AFn−1

t λ > (B.16)

because

dQλ = n(n + 1)

∫ 1

0
dt < Dt[∆AFn−1

t λ] > (B.17)

or

dQλ = n(n + 1)

∫ 1

0
dt

〈

d

dt
FtF

n−1
t λ − ∆AFn−1

t Dtλ]

〉

(B.18)

and, using d
dt

Fn−1
t = 1

n
d
dt

Fn
t inside the bracket < > we get

dQλ = (n + 1) < (Fn
1 − Fn

0 )λ > −n(n + 1)

∫ 1

0
dt < ∆AFn−1

t Dtλ > (B.19)

where the first term of the second member is zero due to the E.O.M.

The conserved gauge charge is then

Q(λ) =

∫

∂Σ
Qλ = n(n + 1)

∫

∂Σ

∫ 1

0
dt < ∆AFn−1

t λ > (B.20)

This expression for Q(λ) yields the one for a pure Chern-Simons theory, by setting

A = 0, because the configuration A = 0 does satisfy the E.O.M., in agreement with the

hypotheses of our derivation.

B.4 Algebra of the gauge charges

If

Qλ = n(n + 1)

∫ 1

0
dt < ∆AFn−1

t λ > (B.21)

the algebra of the gauge charges is given by

{Q(λ),Q(η)} := δηQ(λ) (B.22)

To evaluate this expression we notice that under finite gauge transformations

A → g−1[A + d]g , A → g−1[A + d]g
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hence ∆A → g−1∆A g, At → g−1[At + d]g, F → gFg−1 , F̄ → gF̄ g−1 and Ft → gFtg
−1.

Writing g in the form g = exp[−λ] with λ = λITI , in the case of an infinitesimal λ we

recover the expressions for infinitesimal gauge transformations δλA = −Dλ , δλA = −Dλ

and δλAt = −Dtλ = −dλ − Atλ + λAt.

To compute δη on Q(λ) it is easier to start with a finite transformation g = exp[−η]

and then take the limit η ¿ 1. We have

< ∆AFn−1
t λ >→< g−1∆AFn−1

t gλ >

and, using the cyclic property of the trace

< g−1∆AFn−1
t gλ >=< ∆AFn−1

t gλg−1 >

and using the infinitesimal form g = 1 − η it results

δηQ(λ) = Q([λ, η]) (B.23)

or

{Q(λ),Q(η)} = Q([λ, η]) (B.24)

Notice the absence of central charges in the second member, which was to be expected,

because central charges are characteristic of quasi-invariant lagrangians and transgressions

are truly invariant.

C. Gravity and the transgression form

In this appendix we derive the explicit expression for the AdS group transgression form

given in the main text.

The AdS curvatures are

F =
1

2
RJ + TP , F =

1

2
RJ + TP (C.1)

where R = dω + ω2, R = dω + ω2 are the curvatures, T a = dea + ωa
be

b = Dea, T
a

=

dea + ωa
be

b = Dea are the torsions, and R = R + e2, R = R + e2. Furthermore

Ft =
1

2
RtJ + TtP (C.2)

with

Rt = tR + (1 − t)R − t(1 − t)[θ2 + E2] (C.3)

where we define θ = ω − ω = ∆ω (even though θ is not the Second Fundamental Form for

generic ω and ω) and E = e − e. Rt can also be written as

Rt = tR + (1 − t)R − t(1 − t)θ2 + e2
t (C.4)

where et = te + (1 − t)e. Furthermore

Tt = tT + (1 − t)T − t(1 − t)((θE)) (C.5)
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where the double parentheses stands for contractions, for instance ((ω2))ab ≡ ωafω b
f ≡

(ω2)ab, and ((ωe)) ≡ ωafef .

The AdS transgression form must be the of the form

T AdS
2n+1 = κ

∫ 1

0
dtε(R + t2e2)ne − κ

∫ 1

0
dtε(R + t2e2)ne − dB2n (C.6)

where the boundary term B2n is what we intend to determine.

The variation of the bulk AdS CS form is

δCAdS
2n+1 = κεRnδe + κεnRn−1Tδω + dΞ (C.7)

where the boundary contribution is

Ξ = −κn

∫ 1

0
dtε(R + t2e2)n−1eδω (C.8)

The variation of the transgression must then be

δT AdS
2n+1 = κεRnδe + κεnRn−1Tδω − κεR

n
δe − κεnR

n−1
Tδω + dΞ − dΞ + d[δB2n] (C.9)

But

κεRnδe + κεnRn−1Tδω − κεR
n
δe − κεnR

n−1
Tδω =

= (n + 1) < FnδA > −(n + 1) < F
n
δA > (C.10)

So, except for an irrelevant closed form, it must hold that

Θ2n = Ξ − Ξ + δB2n (C.11)

Our goal is to find B2n. To that end we notice that Ξ contains only δω while Ξ contains

only δω, therefore the coefficients of δe and δe on Θ2n and B2n must be the same. We will

exploit this fact to integrate the variations.

For AdS

Θ2n = −κn

∫ 1

0
dtε{[θRn−1

t ]δet + [ERn−1
t + (n − 1)θRn−2

t Tt]δωt} (C.12)

But

εRn−1
t δet = ε[ξt(ω, ω) + e2

t ]
n−1δet (C.13)

with

ξt(ω, ω) = tR + (1 − t)R − t(1 − t)θ2 (C.14)

Expanding we get

εRn−1
t δet = ε

{

n−1
∑

k=0

Cn−1
k ξn−1−k

t e2k
t δet

}

= εδ(et)

{

n−1
∑

k=0

Cn−1
k

2k + 1
ξn−1−k
t e2k+1

t

}

(C.15)
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where we used the symbol δ(et) in the last member to indicate that only the vielbeins are

varied there. We can then write

εRn−1
t δet = δ(et)

{

∫ 1

0
dsε

[

n−1
∑

k=0

Cn−1
k ξn−1−k

t s2ke2k
t

]

et

}

= εδ(et)

{
∫ 1

0
ds εθet[ξt + s2e2

t ]
n−1

}

where again only the vielbeins are varied. It follows that

B2n = κn

∫ 1

0
dt

∫ 1

0
ds ε θet

{

tR + (1 − t)R − t(1 − t)θ2 + s2e2
t

}n−1
(C.16)

It may worry the reader that a contribution to B2n depending only on ω and ω could

have been missed in this approach, however looking at Θ2n above it is clear that such a

contribution does not exist, as every term has a dependence on e or e.

D. Conserved charges for black holes with a reference background

In order to evaluate the Noether charge associated to the time like Killing vector ξ = ∂
∂t

for two black hole configurations with parameters σ and σ respectively the relevant non

vanishing ingredients [39, 31] are5

θ1m = −(∆ − ∆)ẽm , (θ2)mn = −(∆ − ∆)ẽmẽn

IξAt = [t∆ + (1 − t)∆]P0 + rJ01 , (e2
t )

mn = r2ẽmẽn

Rmn = (1 − ∆2)ẽmẽn , R̄mn = (1 − ∆
2
)ẽmẽn

R0m = −∆r dtẽm , R̄0m = −∆r dtẽm (D.1)

Also ∆ = (1−σ+r2)
1

2 with σ = (2Gm+1)
1

n and ∆ = (1−σ+r2)
1

2 with σ = (2Gm+1)
1

n . In

the previous expressions m and m are just certain constants of integration of the solutions,

which turn to be closely related to the energy coming from the thermodynamics and the

one coming from the Noether charge, justifying in retrospect to call those parameters the

’masses’ of the black holes.

We will need the components of Rt = tR + (1 − t)R̄ − t(1 − t)θ2 + e2
t , where et =

te + (1 − t)ē), with group indices mn. Those are

(

tR + (1 − t)R̄ − t(1 − t)θ2 + e2
t

)mn
=

{

1 − [t∆ + (1 − t)∆]2 + r2
}

ẽmẽn (D.2)

The charge coming from eq.(2.6)is in this case

Q(
∂

∂t
) = κn

∫

∂Σ

∫ 1

0
dt 2ε01m1m2...m2n−1

[IξAt]
0θ1m1Rm2m3

t ...R
m2n−2m2n−1

t (D.3)

where we used that the only non vanishing components of ∆A with support in the spatial

boundary are θ1m, so the index 1 is necessarily there, while the index 0 must then be in

5in this appendix, as in the previous one θ = ω − ω̄, even though for generic connections θ is not he

Second Fundamental Form. We also use the Rt notation of the previous appendix.
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IξAt, which must therefore contain the only generator Pa. Inserting the expressions for the

terms of this equation and integrating in the spatial boundary ∂Σ ≡ Sd−2 we get

Q(
∂

∂t
) = −κ2nΩd−2

∫ 1

0
dt{(∆ − ∆)[t∆ + (1 − t)∆] ×

×[1 − (t∆ + (1 − t)∆)2 + r2]n−1} (D.4)

where Ωd−2 is the volume of the sphere of dimension d−2 resulting from the integration of

the angular variables. The integral in the parameter t can be done trough the substitution

u = 1 − (t∆ + (1 − t)∆)2 + r2 and the result is

Q(
∂

∂t
) = κ(d − 2)!Ωd−2[u

n] |1−∆2+r2

1−∆
2
+r2

(D.5)

Notice that 1 − ∆2 + r2 = σ and 1 − ∆
2
+ r2 = σ. The result is

Q(
∂

∂t
) = κ(d − 2)!Ωd−2[σ

n − σn] (D.6)

Using the expressions for σ and σ, that κ = 1
2G(d−2)!Ωd−2

we get

Q(
∂

∂t
) = m − m = E − Ē (D.7)

Particular cases of this expression are the zero mass black hole (with m = 0) and AdS

(with m = − 1
2G

). The AdS mass can be thought as a vacuum or Casimir energy.

A similar calculation yields the charge for topological black holes. Topological black

holes are labeled by the parameter γ which can take the values 1, 0 or -1. The line element

is

ds2 = −∆2dt2 +
1

∆2
dr2 + r2dΣ2

d−2 (D.8)

where dΣ2
d−2 is the line element of the d− 2 sphere (γ = 1, the case just considered), plane

(γ = 0) or hyperboloid (γ = −1) and

∆2 = γ − σ + r2

σ = (2Gµ + δ1,γ)
1

n (D.9)

where Σd−2 stands for the volume of the corresponding d−2 dimensional manifold and µ is

a parameter or integration constant which, after the thermodynamics and Noether charge

computation of the energy, will be regarded as a energy or mass density.

The calculation of Noether charge is analogous. We now have

(Rt)
mn =

{

γ − [t∆ + (1 − t)∆]2 + r2
}

ẽmẽn (D.10)

The charge is

Q(
∂

∂t
) = κ(d − 2)!Σd−2[u

n] |σσ= κ(d − 2)!Σd−2[σ
n − σn] (D.11)
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where now ∂Σ ≡ Σd−2. Using the expressions for σ and σ and κ = 1
2G(d−2)!Ωd−2

we get

Q(
∂

∂t
) =

Σd−2

Ωd−2
[µ − µ] = E − Ē (D.12)

which implies that the parameter µ is a sort of energy density.

We will furthermore consider the A configuration for with the horizon radius is zero

r+ = 0, so that σ = γ. For γ = 0,−1 (the γ = 1 case was studied above) we get

Q

(

∂

∂t

)

=
Σd−2

Ωd−2

(

µ − γn

2G

)

. (D.13)

Here γn

2G
can be interpreted as a vacuum or Casimir energy density.
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[39] J. Crisóstomo, R. Troncoso and J. Zanelli, Black hole scan, Phys. Rev. D 62 (2000) 084013

[hep-th/0003271].

[40] R. Aros, R. Troncoso and J. Zanelli, Black holes with topologically nontrivial AdS

asymptotics, Phys. Rev. D 63 (2001) 084015 [hep-th/0011097].

[41] S. Silva, On superpotentials and charge algebras of gauge theories, Nucl. Phys. B 558 (1999)

391 [hep-th/9809109].

[42] G. Sardanashvily, Gauge conservation laws in higher-dimensional Chern-Simons models,

hep-th/0303059; Energy-momentum conservation laws in higher-dimensional Chern-Simons

models, hep-th/0303148.

[43] The expressions for the conserved charges (2.6) and (2.7) for a transgression form have been

written in Pablo Mora, Ph. D. Thesis, Universidad de la República (2003) [37], as well as in

the preprint P. Mora, R. Olea, R. Troncoso and J. Zanelli CECS-PHY-04/13. This has also

been recently discussed in refs. [35] and in [36].

[44] D. Lovelock, The Einstein tensor and its generalizations, J. Math. Phys. 12 (1971) 498.
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